How do you solve sinx-2sinxcosx=0 between the interval 0<=x<=2pi?

1 Answer
Nov 26, 2016

Solution: in interval 0 <= x <= 2pi , x=pi/3, x= (5pi)/3

Explanation:

sinx-2sinxcosx =0 or cancelsinx = 2 cancelsinxcosx or 2cosx = 1 or cosx=1/2
We know cos (pi/3)=1/2 and cos (2pi-pi/3)=1/2 :. x=pi/3, x= (5pi)/3

Solution: in interval 0 <= x <= 2pi , x=pi/3, x= (5pi)/3 [Ans]