How do you solve sinx-2sinxcosx=0sinx2sinxcosx=0?

1 Answer
Sep 26, 2016

x=npix=nπ or x=2npi+-pi/3x=2nπ±π3, where nn is an integer

Explanation:

sinx-2sinxcosx=0sinx2sinxcosx=0

hArrsinx(1-2cosx)=0sinx(12cosx)=0

Hence either sinx=0sinx=0 i.e. x=npix=nπ, where nn is an integer

or 1-2cosx=012cosx=0 i.e. cosx=1/2cosx=12 and x=2npi+-pi/3x=2nπ±π3, where nn is an integer