How do you solve sin4x+2sin2x=0?

1 Answer
Dec 22, 2016

{0 + 2pin, pi/2 + 2pin, pi + 2pin, (3pi)/2 + 2pin}

Explanation:

Expand using sin(A + B) = sinAcosB + cosAsinB:

sin(2x + 2x) + 2sin2x= 0

sin2xcos2x + sin2xcos2x + 2sin2x = 0

2sin2xcos2x + 2sin2x = 0

2sin2x(cos2x + 1) = 0

Case 1: 2sin2x= 0

Use sin2theta = 2sinthetacostheta:

2(2sinxcosx) = 0

4sinxcosx= 0

Whenever sinx = 0 and whenever cosx = 0, the entire equation will equal 0. So, x = 0 + 2pin, pi/2 + 2pin, pi + 2pin, (3pi)/2 + 2pin#.

Case 2: cos2x + 1 = 0

Use the identity cos2x = 2cos^2x - 1.

2cos^2x - 1 + 1 = 0

2cos^2x = 0

cos^2x= 0

cosx =0

x = pi/2 + 2pin and (3pi)/2 + 2pin

Hopefully this helps!