How do you solve sin2xsinx-cosx=0?

2 Answers
Nov 8, 2016

The values of x in { pi/2,(3pi)/2,pi/4,(3pi)/4,(5pi)/4,(7pi)/4}

Explanation:

Sin2x=2sinxcosx
sin2xcosx-cosx=2sinxcosxsinx-cosx=cosx(2sin^2x-1)
cosx=0 and 2sin^2x-1=0 =>sinx=+-1/sqrt2
Let the solutions x in[0,2pi]
The solution of the first equation is (pi/2,(3pi)/2)
The solution of the second equations are (pi/4,(3pi)/4,(5pi)/4,(7pi)/4)

Nov 8, 2016

x=(kpi)/2 or x=(kpi)/4 k in ZZ

Explanation:

Solving the given trigonometric equation sin2xsinx - cosx is determined by:

Substituting some trigonometric identities.

color(blue)(sin2x=2sinxcosx)

color(red)(cos2x=1 - 2sin^2)

Performing some calculations.

Factorizing sin2x - cosx

" "

Solving the given equation:

sin2xsinx-cosx=0

rArr(color(blue)(2sinxcosx))sinx-cosx=0

rArr2sin^2xcosx-cosx=0

rArrcosx(color(red)(2sin^2x-1))=0

rArrcosx(color(red)(-cos2x))=0

rArr-cosxcos2x=0

cosx =0 rArr x=(kpi)/2" " k in ZZ

Or

cos2x=0
rArr 2x=(kpi)/2
rArr x=(kpi)/4 " " k in ZZ

Therefore,

x=(kpi)/2 or x=(kpi)/4 k in ZZ