How do you solve sin2x + 2 sinx cosx - 1= 0sin2x+2sinxcosx1=0?

1 Answer
May 14, 2015

Reminder: sin 2a = 2sin a.cos a.

f(x) = sin 2x + 2sin x.cos x - 1 = 0
2sin 2x = 1 -> sin 2x = 1/2 = sin (pi/6), and 1/2 = sin (5pi)/62sin2x=1sin2x=12=sin(π6),and12=sin(5π)6
On the trig unit circle:

a. 2x = pi/6 -> x = pi/122x=π6x=π12

b. 2x = (5pi)/6 -> x = (5pi)/12. 2x=5π6x=5π12.

Check:
x = pi/12 -> 2x = pi/6 -> sin 2x = 1/2x=π122x=π6sin2x=12 -> 1 - 1 = 0 Correct
x = (5pi)/12 -> 2x = (5pi)/6 -> sin ((5pi)/6) = 1/2x=5π122x=5π6sin(5π6)=12 -> 1 - 1 = 0 Correct