How do you solve sin(x+pi/4)+sin(x-pi/4)=1 over the interval (0,2pi)?

1 Answer
Apr 17, 2015

Use the trig identity: color(blue)(sin (a + b) + sin (a - b) = 2sin a*cos b)

f(x) = 2*sin x*cos (pi/4) - 1 = 0 ,

since color(blue)(cos (pi/4) = (sqrt2)/2

f(x) = (sqrt2*sin x) - 1 = 0

sin x = 1/sqrt2 = (sqrt2)/2 -->

color(red)(x = pi/4 and 3pi/4 (inside interval 0 - 2pi)

Check:
x = pi/4 --> x + pi/4 = pi/2 --> sin (x + pi/4) = 1; cos (x + pi/4) = 0 --> f(x) = 1 - 1 = 0. Correct.
x = 3pi/4 --> (x + pi/4) = pi --> sin pi = 0; cos pi = -1 --> f(x) = 1 - 1 = 0. Correct