How do you solve sin (x/2) + cosx -1= 0sin(x2)+cosx1=0 over the interval 0 to 2pi?

1 Answer
Jan 31, 2016

0, 2pi, pi/3; 5pi/3 0,2π,π3;5π3-->interval (0, 2pi)(0,2π)

Explanation:

Use trig identity: cos 2a = 1 - 2sin^2 acos2a=12sin2a
cos x = 1 - 2sin^2 (x/2)cosx=12sin2(x2).
Call sin (x/2) = tsin(x2)=t, we get:
t + (1 - 2t^2) - 1 = t(1 - 2t) = 0t+(12t2)1=t(12t)=0
2 solutions:
a. t = sin (x/2) = 0 t=sin(x2)=0-->
x/2 = 0x2=0 --> x = 0x=0, and
x/2 = pix2=π --> x = 2pix=2π
b. 1 - 2t = 0 --> t = sin x = 1/2t=sinx=12
t = sin x/2 = 1/2t=sinx2=12 --> 2 answers:
x/2 = pi/6x2=π6 --> x = pi/3x=π3
x/2 = (5pi)/6 --> x = (5pi)/3x2=5π6x=5π3
Check
x = pi/3 --> x/2 = pi/6 --> sin x/2 = 1/2 --> cos pi/3 = 1/2 -->
1/2 + 1/2 - 1 = 0. Correct
x = (5pi)/3 --> x/2 = (5pi)/6 --> sin (5pi)/6 = 1/2 --> cos (5pi)/3 = cos (pi/3) = 1/2 --> 1/2 + 1/2 - 1 = 0. OK