How do you solve (sin(x))^2 = 1/25(sin(x))2=125?

1 Answer
Jun 2, 2016

11^@54; 168^@46; 191^@54; 348^@461154;16846;19154;34846

Explanation:

sin^2 x = 1/25sin2x=125 --> sin x = +- 1/5sinx=±15
Calculator and unit circle -->
a. sin x = 1/5sinx=15 --> There are 2 solution arcs:
x = 11^@54x=1154 and x = 180 - 11^@54 = 168^@46x=1801154=16846
b. sin x = - 1/5sinx=15. Two solution arcs:
x = - 11.54x=11.54 or x = 360 - 11.54 = 348.46x=36011.54=348.46 (co-terminal arcs)
x = 180 + 11.54 = 191.54x=180+11.54=191.54
Answers for (0, 360^@)(0,360):
11^@54; 168^@46; 191^@54; 348^@461154;16846;19154;34846