How do you solve sin(2x)=sqrt3/2 and find all solutions in the interval [0,2pi)?

1 Answer
Jul 26, 2016

The Soln. Set ={pi/6, pi/3, 7pi/6, 4pi/3} sub [0, 2pi).

Explanation:

sin(2x)=sqrt3/2=sin(pi/3)..............(1)

Now, let use the soln. for the trigo. eqn.

: sintheta=sinalpha rArr theta=kpi+(-1)^kalpha, k in ZZ

Hence, using this soln. for (1), we get,

2x=kpi+(-1)^k(pi/3), or, x=kpi/2+pi/6(-1)^ k, in ZZ

k=-2, x=-pi+pi/6=-5pi/6 !in [o,2pi)=I, say.
k=-1, x=-pi/2-pi/6=-2pi/3 !in I
k=0, x=pi/6 in I
k=1, x=pi/2-pi/6=pi/3 in I
k=2, x=pi+pi/6=7pi/6 in I
k=3, x=3pi/2-pi/6=4pi/3 in I
k=4, x=2pi+pi/6=13pi/6 !in I

:. The Soln. Set ={pi/6, pi/3, 7pi/6, 4pi/3} sub [0, 2pi).