How do you solve sin^2x+sinx=0sin2x+sinx=0 and find all solutions in the interval [0,2pi)[0,2π)?

1 Answer
Sep 23, 2016

x = 0, (3 pi) / (2), pix=0,3π2,π

Explanation:

We have: sin^(2)(x) + sin(x) = 0sin2(x)+sin(x)=0; [0, 2 pi)[0,2π)

=> sin(x) (sin(x) + 1) = 0sin(x)(sin(x)+1)=0

=> sin(x) = 0sin(x)=0

=> x = 0, (pi - 0), (pi + 0), (2 pi - 0)x=0,(π0),(π+0),(2π0)

or

=> sin(x) + 1 = 0sin(x)+1=0

=> sin(x) = - 1sin(x)=1

=> x = pi + (pi) / (2)x=π+π2

=> x = 0, (3 pi) / (2), pix=0,3π2,π