How do you solve sin 2theta - cos theta = 0 sin2θcosθ=0 between 0 and 2pi?

1 Answer

in Degrees:" " " "theta=30^@, 90^@, 150^@, 270^@ θ=30,90,150,270
in Radians:" " " "theta=pi/6, pi/2, (5pi)/6, (3pi)/2 θ=π6,π2,5π6,3π2

Explanation:

The given: Solve
sin 2theta-cos theta=0sin2θcosθ=0

because
sin 2theta=2*sin theta cos thetasin2θ=2sinθcosθ
it follows

2 sin theta cos theta-cos theta=02sinθcosθcosθ=0
factor out cos thetacosθ

cos theta(2 sin theta-1)=0cosθ(2sinθ1)=0
Equate both factors to zero

cos theta=0cosθ=0 and 2 sin theta-1=02sinθ1=0
theta=cos^-1 (0)=90^@, 270^@θ=cos1(0)=90,270

also

2 sin theta = 12sinθ=1
sin theta = 1/2sinθ=12
theta=sin^-1 (1/2)=30^@,150^@θ=sin1(12)=30,150

the solutions are:

theta=30^@, 90^@, 150^@, 270^@θ=30,90,150,270

have a nice day...from the Philippines !