How do you solve sin^2(2x)+cos^2x=0?

1 Answer
Feb 23, 2017

For (x, 2pi)
pi/6; pi/2; (5pi)/6; (7pi)/6; (3pi)/2; (11pi)/6

Explanation:

Reminder:
sin^2 (2x) = 4sin^2 x.cos^2 x
We get:
sin^2 (2x) + cos^2 x = cos^2 x(1 + 4sin^2 x) = 0
a. cos^2 x = 0 --> cos x = 0 --> 2 solutions:
x = pi/2 and x = (3pi)/2
b. 1 + 4sin^2 x = 0 --> sin^2 x = 1/4 -->
sin x = +- 1/2
Use trig table and unit circle.
sin x = 1/2 --> x = pi/6 and x = (5pi)/6
sin x = - 1/2 --> x = (7pi)/6 and x = (11pi)/6