How do you solve secx+5=2secx+3 for 0<=x<=2pi?

1 Answer
Apr 11, 2018

color(blue)(pi/3, (5pi)/3)

Explanation:

Identity:

color(red)bb(secx=1/cosx)

secx+5=2secx+3

Collect like terms:

2secx-secx=5-3

secx=2

Using identity:

1/cosx=2

cosx=1/2

x=arccos(cosx)=arccos(1/2)=>x=pi/3

This is in the I quadrant. The cosine is positive so, we also have an angle in the IV quadrant:

2pi-pi/3=(5pi)/3

So our solutions for:

0 <= x <= 2pi

color(blue)(pi/3, (5pi)/3)