How do you solve sec^5x = 4secxsec5x=4secx from 0 to 2pi?

1 Answer
Aug 13, 2015

Solve sec^5 x = 4sec xsec5x=4secx

Ans: +- pi/4, +- (3pi)/4)±π4,±3π4)

Explanation:

sec^5 x - 4sec x = 0sec5x4secx=0

sec x(sec^4 x - 4) = sec x(sec^2 x - 2)(sec^2 x + 2) =secx(sec4x4)=secx(sec2x2)(sec2x+2)=

= sec x(sec x - sqrt2)(sec x + sqrt2)(sec^2 x + 2) = 0=secx(secx2)(secx+2)(sec2x+2)=0

a. sec x = 1/cos x = 0secx=1cosx=0 (undefined)
b. 1/cos x = sqrt21cosx=2 --> cos x = 1/sqrt2 = sqrt2/2cosx=12=22 --> x = +- pi/4x=±π4
c. sec x = 1/cos x = -sqrt2secx=1cosx=2 --> cos x = -1/sqrt2cosx=12 --> x = +-(3pi)/4x=±3π4
d. (sec^2 x + 2) (always positive)

Answers: +- pi/4, +- (3pi)/4±π4,±3π4
Note. Arc -pi/4Arcπ4 is arc (7pi)/47π4, and arc -(3pi)/43π4 is the arc (5pi)/45π4