How do you solve m^2 + m + 1 = 0 using the quadratic formula?

1 Answer
Jul 9, 2018

m=(-1+sqrt(3)i)/2, (-1-sqrt(3)i)/2

Explanation:

Solve:

m^2+m+1=0

This is a quadratic equation in standard form:

ax^2+bx+c,

where:

a=1, b=1, c=1

Quadratic formula

x=(-b+-sqrt(b^2-4ac))/(2a)

Substitute m for x. Plug in the known values.

m=(-1+-sqrt(1^2-4*1*1))/(2*1)

m=(-1+-sqrt(-3))/2

Simplify.

m=(-1+-sqrt(3)i)/2

m=(-1+sqrt(3)i)/2, (-1-sqrt(3)i)/2