How do you solve log_9x=2log9x=2?

2 Answers
Nov 13, 2016

log_9 x = 2log9x=2

Use the log rule: If log_b x= alogbx=a, then b^a=xba=x

9^2=x92=x

x=81x=81

Nov 13, 2016

x=81x=81

Explanation:

From definition of logarithm

if a^m=bam=b then log_a b=mlogab=m

and vice versa i.e. if log_a b=mlogab=m then a^m=bam=b

Hence log_9 x=2log9x=2 implies 9^2=x92=x

i.e. x=81x=81