How do you solve log_6 (x+ 1)+ log_6 (x-4)= 1 ?

1 Answer
Jul 30, 2016

x=5

Explanation:

Given:

log_6(x+1)+log_6(x-4) = 1

We require:

6 = 6^1 = 6^(log_6(x+1)+log_6(x-4)) = (x+1)(x-4) = x^2-3x-4

Subtract 6 from both ends to get:

0 = x^2-3x-10 = (x-5)(x+2)

So x=5 or x=-2

If x=5 then:

log_6(x+1)+log_6(x-4) = log_6(6)+log_6(1) = 1+0 = 1

So x=5 is a solution of the original equation.

If x=-2 then (even if we allow Complex logarithms):

log_6(x+1)+log_6(x-4)

= log_6(-1)+log_6(-6)

= log_6(1)+(pi i)/ln(6) + log_6(6)+(pi i)/ln(6)

= 1+(2pi i)/ln(6) != 1

So x=-2 is not a solution of the original equation.