Move the #x# term to the right side, then divide everything by #3#:
#2x+3y=3#
#3y+2x=3#
#3y+2xcolor(blue)-color(blue)(2x)=3color(blue)-color(blue)(2x)#
#3ycolor(red)cancelcolor(black)(color(black)+2xcolor(blue)-color(blue)(2x))=3color(blue)-color(blue)(2x)#
#3y=3color(blue)-color(blue)(2x)#
#3y=-2x+3#
#color(blue)(color(black)(3y)/3)=color(blue)(color(black)(-2x+3)/3)#
#color(blue)(color(black)(color(red)cancelcolor(black)3y)/color(red)cancelcolor(blue)3)=color(blue)(color(black)(-2x+3)/3)#
#y=color(blue)(color(black)(-2x+3)/3)#
#y=color(blue)(color(black)(-2x)/3)+color(blue)(color(black)3/3)#
#y=color(blue)(color(black)(-2x)/3)+1#
#y=-2/3x+1#
That is solving for #y#. Hope this helped!