How do you solve cscxcot^2x=cscxcscxcot2x=cscx for 0<=x<=2pi0x2π?

1 Answer
Jul 17, 2017

The Soln. Set ={pi/4,3pi/4,5pi/4,7pi/4} sub [0,2pi].={π4,3π4,5π4,7π4}[0,2π].

Explanation:

cscxcot^2x=cscx rArr cscxcot^2x-cscx=0.cscxcot2x=cscxcscxcot2xcscx=0.

:. cscx(cot^2x-1)=0.

Since, AA x, csc x ne0, cot^2x=1 rArr cotx=+-1.

cotx=1 rArr x=pi/4, pi+pi/4=5pi/4.

cotx=-1 rArr x=pi-pi/4=3pi/4, 2pi-pi/4=7pi/4.

Hence, the Soln. Set ={pi/4,3pi/4,5pi/4,7pi/4} sub [0,2pi].