How do you solve csc^2x-cscx+9=11csc2xcscx+9=11 for 0<=x<=2pi0x2π?

1 Answer
Sep 19, 2016

x = (pi) / (6), (5 pi) / (6), (3 pi) / (2)x=π6,5π6,3π2

Explanation:

We have: csc^(2)(x) - csc(x) + 9 = 11csc2(x)csc(x)+9=11; 0 leq x leq 2 pi0x2π

=> csc^(2)(x) - csc(x) - 2 = 0csc2(x)csc(x)2=0

=> csc^(2)(x) + csc(x) - 2 csc(x) - 2 = 0csc2(x)+csc(x)2csc(x)2=0

=> csc(x) (csc(x) + 1) - 2 (csc(x) + 1) = 0csc(x)(csc(x)+1)2(csc(x)+1)=0

=> (csc(x) + 1 ) (csc(x) - 2) = 0(csc(x)+1)(csc(x)2)=0

=> csc(x) + 1 = 0csc(x)+1=0

=> csc(x) = - 1csc(x)=1

=> x = csc^(- 1)(- 1)x=csc1(1)

=> x = (3 pi) / (2)x=3π2

or

=> csc(x) - 2 = 0csc(x)2=0

=> csc(x) = 2csc(x)=2

=> x = csc^(- 1)(2)x=csc1(2)

=> x = (pi) / (6)x=π6

Then, the domain given is 0 leq x leq 2 pi0x2π:

=> x = (pi) / (6), (3 pi) / (2), pi - (pi) / (6)x=π6,3π2,ππ6

=> x = (pi) / (6), (5 pi) / (6), (3 pi) / (2)x=π6,5π6,3π2