How do you solve cot^2x-cscx=1?

1 Answer
Jan 3, 2017

x = pi/6 + 2pin, (5pi)/6 + 2pin and (3pi)/2 + 2pin

Explanation:

Use the pythagorean identity cot^2theta + 1 = csc^2theta. This means that cot^2theta = csc^2theta - 1.

csc^2x - 1 - cscx = 1

csc^2x - cscx - 2 = 0

Let t = cscx.

t^2 - t - 2 = 0

(t - 2)(t + 1) = 0

t = 2 and -1

cscx = 2 and cscx = -1

1/sinx = 2 and 1/sinx = -1

sinx = 1/2 and sinx = -1

x = pi/6 + 2pin, (5pi)/6 + 2pin and (3pi)/2 + 2pin

Hopefully this helps!