How do you solve cot^2x+cotx=0 and find all solutions in the interval 0<=x<360?

2 Answers
Jul 11, 2018

pi/2,3*pi/2,3*pi/4,7*pi/4

Explanation:

Factorizing your equation we get

cot(x)=0 so cos(x)=0
we get the following Solutions in the given interval

x=pi72 or x=3pi/2
for the second case we get

cot(x)=-1 so cos(x)=-sin(x)
and we get

x=3pi/4 or x=7pi/4

Hint:
To get the Solutions of the last equation you can use

sqrt(sin(x+pi/4)=0

x=90^\circ, 135^\circ, 270^\circ, 315^\circ

Explanation:

Given that

\cot^2x+\cot x=0

\cot x(\cot x+1)=0

\cot x=0\ \ or\ \ \cot x=-1

\tan x=\infty\ \ or \ \ \tan x=-1

x=n\pi+\pi/2\ \ or \ \ x=n\pi-\pi/4

Where, n is any integer i.e. n=0, \pm1, \pm2, \pm3, \ldots

But given that x\in[0, 360^\circ], hence setting n=0, 1 in first general solution & n=1, 2 in second general solutions, we get

x=\pi/2, {3\pi}/2\ \ or\ \ x={3\pi}/4, {7\pi}/4

x=\pi/2, {3\pi}/4, {3\pi}/2, {7\pi}/4

x=90^\circ, 135^\circ, 270^\circ, 315^\circ