cosxcotx = 3(1 - sinx)cosxcotx=3(1−sinx)
cosxcotx = 3 - 3sinxcosxcotx=3−3sinx
cosx xx cosx/sinx = 3 - 3sinxcosx×cosxsinx=3−3sinx
cos^2x/sinx = 3 - 3sinxcos2xsinx=3−3sinx
cos^2x = sinx(3 - 3sinx)cos2x=sinx(3−3sinx)
cos^2x = 3sinx - 3sin^2xcos2x=3sinx−3sin2x
1 - sin^2x = 3sinx - 3sin^2x1−sin2x=3sinx−3sin2x
3sin^2x - sin^2x - 3sinx + 1 = 03sin2x−sin2x−3sinx+1=0
2sin^2x - 3sinx + 1 = 02sin2x−3sinx+1=0
2sin^2x - 2sinx - sinx + 1 = 02sin2x−2sinx−sinx+1=0
2sinx(sinx - 1) - 1(sinx - 1) = 02sinx(sinx−1)−1(sinx−1)=0
(2sinx - 1)(sinx - 1) = 0(2sinx−1)(sinx−1)=0
sinx = 1/2 and sinx = 1sinx=12andsinx=1
x = pi/6, (5pi)/6 and pi/2x=π6,5π6andπ2
However, pi/2π2 is extraneous, since it renders the denominator 00.
Hopefully this helps!