How do you solve (cosxcotx)/(1-sinx)=3cosxcotx1sinx=3 and find all solutions in the interval [0,2pi)[0,2π)?

1 Answer
Sep 6, 2016

x = pi/6 and (5pi)/6x=π6and5π6

Explanation:

cosxcotx = 3(1 - sinx)cosxcotx=3(1sinx)

cosxcotx = 3 - 3sinxcosxcotx=33sinx

cosx xx cosx/sinx = 3 - 3sinxcosx×cosxsinx=33sinx

cos^2x/sinx = 3 - 3sinxcos2xsinx=33sinx

cos^2x = sinx(3 - 3sinx)cos2x=sinx(33sinx)

cos^2x = 3sinx - 3sin^2xcos2x=3sinx3sin2x

1 - sin^2x = 3sinx - 3sin^2x1sin2x=3sinx3sin2x

3sin^2x - sin^2x - 3sinx + 1 = 03sin2xsin2x3sinx+1=0

2sin^2x - 3sinx + 1 = 02sin2x3sinx+1=0

2sin^2x - 2sinx - sinx + 1 = 02sin2x2sinxsinx+1=0

2sinx(sinx - 1) - 1(sinx - 1) = 02sinx(sinx1)1(sinx1)=0

(2sinx - 1)(sinx - 1) = 0(2sinx1)(sinx1)=0

sinx = 1/2 and sinx = 1sinx=12andsinx=1

x = pi/6, (5pi)/6 and pi/2x=π6,5π6andπ2

However, pi/2π2 is extraneous, since it renders the denominator 00.

Hopefully this helps!