cos x = sin 2x.sin x
cos x = 2sin x.cos x.sin x = 2cos x.sin^2 xcosx=2sinx.cosx.sinx=2cosx.sin2x
cos x - 2cos x.sin^2 x = 0cosx−2cosx.sin2x=0
Put cos x in common factor:
cos x(1 - 2sin^2 x) = 0cosx(1−2sin2x)=0
Use trig table, and unit circle to solve this trig equation
a. cos x = 0 --> x = pi/2 and x = (3pi)/2x=π2andx=3π2
b. (1 - 2sin^2 x) = 0(1−2sin2x)=0
sin^2 x = 1/2sin2x=12
sin x = +- 1/sqrt2 = +- sqrt2/2sinx=±1√2=±√22
c. sin x = sqrt2/2sinx=√22 --> x = pi/4 and x = (3pi)/4x=π4andx=3π4
d. sin x = - sqrt2/2sinx=−√22 --> x = (5pi)/4 and x = (7pi)/4x=5π4andx=7π4
Answers for (0, 2pi)(0,2π):
pi/2; (3pi)/2; pi/4; (3pi)/4; (5pi)/5; (7pi)/4.π2;3π2;π4;3π4;5π5;7π4.
For general answers, add 2kpi2kπ