How do you solve cosx+1=sinxcosx+1=sinx?

1 Answer
Aug 20, 2015

x = npi + ((-1)^n+1)pi/4 x=nπ+((1)n+1)π4

Explanation:

sin x - cos x = 1 sinxcosx=1
sqrt(2)(1/sqrt(2) sin x - 1/sqrt(2) cos x)= 1 2(12sinx12cosx)=1
sqrt(2)sin (x-pi/4) = 1 2sin(xπ4)=1
sin (x-pi/4) = 1/sqrt(2) sin(xπ4)=12

General solution:
x - pi/4 = npi + (-1)^npi/4 xπ4=nπ+(1)nπ4
x = npi + ((-1)^n+1)pi/4 x=nπ+((1)n+1)π4