How do you solve cos2x+sinx=0 and find all solutions in the interval [0,2pi)?

1 Answer
Oct 27, 2016

Use the identity cos2x = 1- 2sin^2x to get rid of all terms in cosine.

1 - 2sin^2x + sinx = 0

-2sin^2x + sinx + 1 = 0

-2sin^2x + 2sinx - sinx + 1 = 0

-2sinx(sinx - 1) - (sinx - 1) = 0

(-2sinx - 1)(sinx - 1) = 0

sinx = -1/2 and sinx =1

x = (7pi)/6, (11pi)/6, pi/2

Hopefully this helps!