How do you solve Cos (pi/6 + x) + sin (pi/3 +x) = 0?

1 Answer
Sep 13, 2016

pi/2, (3pi)/2 for (0, 2pi)

Explanation:

Property of complementary arcs-->
sin (pi/3 + x) = cos (pi/2 - (pi/3 + x)) = cos (pi/6 - x)
Use trig identity:
cos a + cos b = 2 cos ((a + b)/2).cos ((a - b)/2)
The equation becomes:
S = cos (pi/6 + x) + cos (pi/6 - x) = 0
a = (pi/6 + x) , and b = (pi/6 - x)
(a + b)/2 = pi/6, and (a - b)/2 = x
Finally,
S = 2cos (pi/6)cos x = 0
cos x = 0 --> x = pi/2 and x = (3pi)/2
Answers for (0, 2pi):
pi/2 ; (3pi)/2
For general answers, add 2kpi
Check with x = (pi/2):
cos (pi/6 + x) = cos (pi/6 + pi/2) = cos ((2pi)/3) = - 1/2
sin (pi/3 + x) = sin (pi/3 + pi/2) = sin ((5pi)/6) = 1/2
S = -1/2 + 1/2 = 0. OK