How do you solve Cos([θ/3]-[pi/4])=1/2?

2 Answers
Jul 9, 2016

theta=-45 ^o

Explanation:

"please remember that " cos (a-b)=cos a*cos b+sin a* sin b

cos (theta/3-pi/4)=cos theta*cos pi/4+sin theta*sin pi/4

cos pi/4=sin pi/4=sqrt2/2

cos((theta/3)-pi/4)=cos (theta/3)*sqrt2/2+sin( theta/3)*sqrt2/2

cos(theta/3)*sqrt2/2+sin (theta/3)*sqrt2/2=1/2

sqrt2/2(cos (theta/3) +sin (theta/3))=1/2

cos (theta/3)+sin (theta/3)=1/cancel(2)*cancel(2)/sqrt2

cos ( theta/3) +sin (theta/3)=1/sqrt2" ; "1/sqrt2=sqrt2/2

cos (theta/3)+sin (theta/3)=sqrt2/2

[cos (theta/3)+sin (theta/3)]^2=[sqrt2/2]^2

cos^2(theta/3)+2*sin(theta/3)*cos(theta/3)+cos^2(theta/3)=1/2

"so ;" cos^2 a+sin^2 a=1;

cos^2(theta/3)+sin^2(theta/3)=1

1+2*sin(theta/3)*cos(theta/3)=1/2

2*sin(theta/3)*cos(theta/3)=1/2-1

2*sin(theta/3)*cos(theta/3)=-1/2

"so ; "2*sin a*cos a=sin(2*a)

2*sin(theta/3)*cos(theta/3)=sin((2*theta)/3)

sin((2theta)/3)=-1/2

(2theta)/3=-30^o

2theta=-90

theta=-45 ^o

Jul 9, 2016

In (0,2 pi), theta=(7pi)/4.

The general value is (6n+7/4)pi, n=0, +-1, +-2, +-3, ...

Explanation:

The principal value of (theta/3-pi/4)

= the principal value of cos^(-1)(1/2)=pi/3.

So, this theta is given by(theta/3-pi/4) =(pi/3. And so, theta=(7pi)/4.

The general value is given by

theta/3-pi/4=2npi+pi/3, n=0,+-1, +-2, =-3, ...

S0, theta = (6n+7/4)pi, n=0, +-1, +-2, +-3,...