How do you solve cos(2theta)+cos(theta)=0cos(2θ)+cos(θ)=0?

1 Answer
Jun 8, 2015

Use trig identity: cos 2a = 2cos^2 a - 1.cos2a=2cos2a1.

2cos^2 x + cos x - 1 = 0.2cos2x+cosx1=0.

Call cos x = t, solve the quadratic equation: y = 2t^2 + t - 1 = 0

Since a - b + c = 0, use shortcut. One real root is t = -1 and the other is (-c/a = 1/2.)(ca=12.)

a. cos x = t = -1 --> x = pix=π

b. cos x = t = 1/2 --> x = +- pi/3cosx=t=12x=±π3