How do you solve cos^2theta+2sintheta=-1?

1 Answer
Nov 11, 2016

Please see the explanation.

Explanation:

Substitute 1 - sin^2(theta) for cos^2(theta):

1 - sin^2(theta) + 2sin(theta) + 1 = 0

Multiply by -1:

sin^2(theta) - 2sin(theta) - 2 = 0

Use the quadratic formula:

sin(theta) = {2 +-sqrt((-2)^2 - 4(1)(-2))}/(2(1))

sin(theta) = 1 +-sqrt(3)

Be must drop the + because it exceeds the domain of the sine function:

sin(theta) = 1 -sqrt(3)

theta = sin^-1(1 -sqrt(3)) + 2pi and theta = pi - sin^-1(1 -sqrt(3))

If you wish, you may write these to repeat at integer multiples of 2pi