How do you solve cos^2 x-sin^2 x=sin x; for -pi<x<=pi?

1 Answer
Apr 19, 2016

S={-pi/2, pi/6,(5pi)/6}

Explanation:

Use Property: cos^2x+sin^2x=1

1-sin^2x-sin^2x=sinx

1-2sin^2x-sinx=0

2sin^2x+sinx-1=0

(2sinx-1)(sinx+1)=0

2sinx-1=0 or sinx+1=0

sinx=1/2 or sinx=-1

x=sin^-1(1/2) or x=sin^-1 (-1)

x=pi/6 +2pin, (5pi)/6+2pin or (3pi)/2 +2pin

n=-1, x=-(11pi)/6,-(7pi)/6,-pi/2

n=0, x=pi/6, (5pi)/6, (3pi)/2

S={-pi/2, pi/6,(5pi)/6}