How do you solve cos 2(x)- cos(x)- 1 = 0cos2(x)cos(x)1=0?

1 Answer
Jun 25, 2017

x = +- 141^@26 + k360^@x=±14126+k360

Explanation:

f(x) = cos 2x - cos x - 1 = 0
Replace cos 2x by (2cos^2 x - 1)(2cos2x1) -->
f(x) = 2cos^2 x - cos x - 2 = 0f(x)=2cos2xcosx2=0
Solve this quadratic equation for cos x -->
D = b^2 - 4ac = 1 + 16 = 17D=b24ac=1+16=17 --> d = +- sqrt17d=±17
There are 2 real roots:
cos x = -b/(2a) +- d/(2a) = 1/4 +- sqrt17/4 = (1 +- sqrt17)/4cosx=b2a±d2a=14±174=1±174
a. cos x = (1 + 4.12)/4 = 5.12/4 = 1.28cosx=1+4.124=5.124=1.28 (rejected because > 1)
b. cos x = (1 - 4.12)/4 = - 3.12/4 = - 0.78cosx=14.124=3.124=0.78
Calculator and unit circle give -->
x = +- 141^@26 = k360^@x=±14126=k360
Check by calculator.
x = 141^@26x=14126 --> cos x = - 0.78 --> 2x = 282^@522x=28252 --> cos 2x = 0.22 -->
f(x) = 0.22 - (- 0.78) - 1 = 0. Proved.