How do you solve Cos 2 theta = cos theta?

1 Answer
May 23, 2016

theta=(2n+1)pi/2 or theta=2npi+-(2pi)/3, where n is an integer.

Explanation:

cos2theta=costheta

or 2cos^2theta-1=costheta (using formula for cos2theta)

the above becomes 2cos^2theta-costheta-1=0

Now using quadratic formula

costheta=(-(-1)+-sqrt((-1)^2-4*2*(-1)))/(2*2)

or costheta=(1+-sqrt(1+8))/4=(1+-3)/4

Hence costheta=1=cos0 or costheta=-1/2=cos((2pi)/3)

Hence theta=(2n+1)pi/2 or theta=2npi+-(2pi)/3, where n is an integer.