How do you solve Cos 2 theta = cos^2 theta - 1/2?

1 Answer
May 26, 2016

pi/4, (3pi)/4, (5pi)/4, (7pi)/4

Explanation:

Replace in the equation cos 2x by (2cos^2 x - 1) -->
2cos^2 x - 1 = cos^2 x - 1/2
cos^2 x = 1 - 1/2 = 1/2
cos x = +- 1/sqrt2 = +- sqrt2/2
Trig table and unit circle give -->
a. cos x = sqrt2/2 --> x = +- pi/4
b. cos x = -sqrt2/2 --> x = +- (3pi)/4
Answers for (0, 2pi) -->
pi/4, (3pi)/4, (5pi)/4, (7pi)/4

Note. Arc -pi/4 is co-terminal to arc (7pi)/4
Arc (-3pi)/4 is co-terminal to arc (5pi)/4