#f(a) = arctan(a^2) - arctan( a) - 0.22 = 0#
Given #a_0# we can expand #f(a)# in Taylor series, at the #a_0# vicinity until the linear term giving
#f(a) = f(a_0) + f'(a_0)(a-a_0) + O(a,a_0)#
If we need #f(a_1) = 0# then supposing that #abs(a_1-a_0) < epsilon# and that #O(a_1,a_0)# is small enough, then
#a_1 = a_0 - f(a_0)/(f'(a_0))# or
#a_{k+1} = a_k - f(a_k)/(f'(a_k))#
In the present case we have
#f´(a) =(2 a)/(1 +a^4) -1/(1 + a^2) #
Applying iteratively this process we obtain
#a_0 = 0.#
#a_1=-0.22#
#a_2 = -0.187754#
#a_3 =-0.187135#
#a_4 =-0.187135#
obtaining a result within #6# sd.