How do you solve and check for extraneous solutions in root3(4x+2) -6 = -1034x+26=10?

1 Answer
Aug 1, 2015

I found: x=-33/2x=332

Explanation:

I would write it as:
root3(4x+2)=-10+634x+2=10+6
root3(4x+2)=-434x+2=4 apply the power of 33 on both sides:
4x+2=(-4)^34x+2=(4)3
4x+2=-644x+2=64
4x=-664x=66
x=-66/4=-33/2x=664=332

Checking the solution we plug it into the original equaton:
root3(4(-33/2)+2)-6=-1034(332)+26=10
root3(-66+2)=-4366+2=4
root3(-64)=-4364=4 true,
considering that: -4*-4*-4=-64444=64