Step 1) Solve the second equation for yy:
y - 2x + 3 + color(red)(2x - 3) = 0 + color(red)(2x - 3)y−2x+3+2x−3=0+2x−3
y - 2x + color(red)(2x) + 3 - color(red)(3) = 0 + 2x - 3y−2x+2x+3−3=0+2x−3
y - 0 + 0 = 2x - 3y−0+0=2x−3
y = 2x - 3y=2x−3
Step 2) Substitute 2x - 32x−3 for yy in the first equation and solve for xx:
9x + 2(color(red)(2x - 3)) = 59x+2(2x−3)=5
9x + 4x - 6 = 59x+4x−6=5
(9 + 4)x - 6 = 5(9+4)x−6=5
13x - 6 = 513x−6=5
13x - 6 + color(red)(6) = 5 + color(red)(6)13x−6+6=5+6
13x - 0 = 1113x−0=11
13x = 1113x=11
(13x)/color(red)(13) = 11/color(red)(13)13x13=1113
(color(red)(cancel(color(black)(13)))x)/color(red)(cancel(color(black)(13))) = 11/13
x = 11/13
Step 3) Substitute 11/13 for x in the solution to the second equation in Step 1) and calculate y:
y = 2(color(red)(11/13)) - 3
y = 22/13 - 3
y = 22/13 - (3 * 13/13)
y = 22/13 - 39/13
y = -17/13