How do you solve 9x + 2y = 5 and y - 2x + 3 = 0?

1 Answer
Dec 23, 2016

x = 11/13x=1113 and y = -17/13y=1713

Explanation:

Step 1) Solve the second equation for yy:

y - 2x + 3 + color(red)(2x - 3) = 0 + color(red)(2x - 3)y2x+3+2x3=0+2x3

y - 2x + color(red)(2x) + 3 - color(red)(3) = 0 + 2x - 3y2x+2x+33=0+2x3

y - 0 + 0 = 2x - 3y0+0=2x3

y = 2x - 3y=2x3

Step 2) Substitute 2x - 32x3 for yy in the first equation and solve for xx:

9x + 2(color(red)(2x - 3)) = 59x+2(2x3)=5

9x + 4x - 6 = 59x+4x6=5

(9 + 4)x - 6 = 5(9+4)x6=5

13x - 6 = 513x6=5

13x - 6 + color(red)(6) = 5 + color(red)(6)13x6+6=5+6

13x - 0 = 1113x0=11

13x = 1113x=11

(13x)/color(red)(13) = 11/color(red)(13)13x13=1113

(color(red)(cancel(color(black)(13)))x)/color(red)(cancel(color(black)(13))) = 11/13

x = 11/13

Step 3) Substitute 11/13 for x in the solution to the second equation in Step 1) and calculate y:

y = 2(color(red)(11/13)) - 3

y = 22/13 - 3

y = 22/13 - (3 * 13/13)

y = 22/13 - 39/13

y = -17/13