How do you solve 8x^2 + 4x = -5 using the quadratic formula?

1 Answer
Apr 25, 2017

x=(-1+-3i)/(4)

Explanation:

The quadratic formula is:

x=(-b+-sqrt(b^2-4ac))/(2a)

where ax^2+bx+c=0

Here is your quadratic equation

8x^2+4x=-5

Move the -5 to the other side of the equation to complete your quadratic equation

8x^2+4x+5=0

Looking at ax^2+bx+c=0
I can see that your values are...

a=8
b=4
c=5

Now just put those values into the quadratic formula

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-(4)+-sqrt((4)^2-4(8)(5)))/(2(8))

x=(-4+-sqrt(16-160))/(16)

x=(-4+-sqrt(-144))/(16)

Here we notice that we have a negative square root.
This turns into an imaginary number or i to remove the negative.

x=(-4+-isqrt(144))/(16)

x=(-4+-12i)/(16)

Notice we have a common factor of 4 in the numerator and denominator.

x=(4(-1+-3i))/(4(4))

Cancel out common factor

x=(cancel(4)(-1+-3i))/(cancel(4)(4))

x=(-1+-3i)/(4)