How do you solve 6x^2+3x-15=0 using the quadratic formula?

1 Answer
Aug 10, 2015

The solutions for the equation are :
color(blue)( x=(-3+sqrt(369))/12

color(blue)( x=(-3-sqrt(369))/12

Explanation:

6x^2+3x−15=0

The equation is of the form color(blue)(ax^2+bx+c=0 where:
a=6, b=3, c=-15

The Discriminant is given by:
Delta=b^2-4*a*c

= (3)^2-(4*6*-(15))

= 9 + 360 = 369

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = ((-3)+-sqrt(369))/(2*6) = (-3+-sqrt(369))/12

The solutions for the equation are :
color(blue)( x=(-3+sqrt(369))/12

color(blue)( x=(-3-sqrt(369))/12