How do you solve 6x^2-12x+1=0 using the quadratic formula?

1 Answer
Aug 24, 2017

See a solution process below:

Explanation:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))

Substituting:

color(red)(6) for color(red)(a)

color(blue)(-12) for color(blue)(b)

color(green)(1) for color(green)(c) gives:

x = (-color(blue)((-12)) +- sqrt(color(blue)((-12))^2 - (4 * color(red)(6) * color(green)(1))))/(2 * color(red)(6))

x = (color(blue)(12) +- sqrt(144 - 24))/12

x = (color(blue)(12) +- sqrt(120))/12

x = (color(blue)(12) +- sqrt(4 * 30))/12

x = (color(blue)(12) +- 2sqrt(30))/12

Or

x = 1 +- sqrt(30)/6