How do you solve #6 (x + 1) - 5 = x + 31#?
1 Answer
Apr 28, 2017
Explanation:
#" the first step is to distribute the bracket"#
#6x+6-5=x+31#
#"simplifying left side"#
#6x+1=x+31#
#"subtract x from both sides"#
#6x-x+1=cancel(x)cancel(-x)+31#
#rArr5x+1=31#
#"subtract 1 from both sides"#
#5xcancel(+1)cancel(-1)=31-1#
#rArr5x=30#
#"divide both sides by 5"#
#(cancel(5) x)/cancel(5)=30/5#
#rArrx=6#
#color(blue)"As a check"# Substitute this value into the equation and if both sides are equal then it is the solution.
#"left side "=6(6+1)-5=42-5=37#
#"right side "=6+31=37#
#rArrx=6" is the solution"#