How do you solve 5x^2 + 8x + 7 = 0 using the quadratic formula?

1 Answer
Oct 21, 2015

The solutions are
x=color(blue)((-8+sqrt(-76))/10
x=color(blue)((-8-sqrt(-76))/10

Explanation:

5x^2+8x+7=0

The equation is of the form color(blue)(ax^2+bx+c=0 where:
a=5, b=8, c=7

The Discriminant is given by:

Delta=b^2-4*a*c

= (8)^2-(4*5*7)

= 64- 140= -76

The solutions are normally found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = (-(8)+-sqrt(-76))/(2*5) = (-8+-sqrt(-76))/10

The solutions are
x=color(blue)((-8+sqrt(-76))/10
x=color(blue)((-8-sqrt(-76))/10