How do you solve 5w^2 - 11w + 10 = 0 using the quadratic formula?

1 Answer
Oct 20, 2015

The solutions are
x=color(blue)((11+sqrt(-79))/10

x=color(blue)((11-sqrt(-79))/10

Explanation:

5w^2-11w+10=0

The equation is of the form color(blue)(aw^2+bw+c=0 where:

a=5, b=-11, c=10

The Discriminant is given by:
Delta=b^2-4*a*c

= (-11)^2-(4*5*10)

= 121 - 200=-79

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = (-(-11)+-sqrt(-79))/(2*5) = (11+-sqrt(-79))/10

The solutions are
x=color(blue)((11+sqrt(-79))/10

x=color(blue)((11-sqrt(-79))/10