How do you solve 5tan3x-5=0 and find all solutions in the interval [0,2pi)?

2 Answers
Oct 29, 2016

In the given interval Solution: x =pi/12; x=(5pi)/12; x= (9pi)/12 ; x= (13pi)/12 ; x= (17pi)/12 ; x= (21pi)/12 ;

Explanation:

5 tan 3x -5=0 or 5 tan 3x = 5 or tan 3x =1 We know tan (pi/4)=1 :.3x =pi/4 also tan (pi+pi/4)=1 or tan ((5pi)/4)=1 :. 3x=(5pi)/4

The given interval for x is [0,2pi). New interval for 3x is [0,6pi). so in the interval [0,6pi).

3x =pi/4; 3x=(5pi)/4; 3x= pi/4+2pi=(9pi)/4 ; 3x= (5pi)/4+2pi=(13pi)/4 ; 3x= pi/4+4pi=(17pi)/4 ; 3x= (5pi)/4+4pi=(21pi)/4 ;

Solution:x =pi/12; x=(5pi)/12; x= (9pi)/12 ; x= (13pi)/12 ; x= (17pi)/12 ; x= (21pi)/12 ; [Ans]

Oct 29, 2016

As tan 3x =1 = tan( pi/4), the general solution is

3x=kpi+pi/4 to x = kpi/3+pi/12, k = 0, +-1, +-2, +-3, ...

Upon setting, k = 0, 1, 2, 3, 4 and 5

x = pi/4, 5/4pi, 9/4pi, 13/4pi,17/4pi and 21/4pi in [0, 2pi].