How do you solve #5sin2x=2cos2x#?
1 Answer
Aug 25, 2015
Solve
Ans:
Explanation:
f(x) = 5sin 2x - 2cos 2x = 0. divide both sides by 5.
Call
sin 2x.cos a - sin a.cos 2x = 0.
Apply the trig identity: sin (a + b) = sin a.cos b - sin b.cos a
sin (2x - a) = sin (2x - 21.80) = 0
2x - 21.80 = 0 and 2x - 21.80 = pi
a. 2x - 21.80 = 0 --> 2x = 21.80 -->
b. 2x - 21.80 = 180 --> 2x = 201.80 -->
Check by calculator.
x = 10.9 --> 2x = 21.80 ; 5sin 2x = 1.86 ; 2cos 2x = 1.86
Therefor: 5sin 2x = 2cos 2x = 1.86. OK
x = 100.90 --> 2x = 201.80 ; 5sin 2x = -1.86 ; 2cos 2x = -1.86.
Therefor: 5sin 2x = 2cos 2x = -1.86.