How do you solve 5(sqrt x) - x =6?

1 Answer
Feb 2, 2016

5(sqrtx)-x=6

rarr5(sqrtx)=6+x

rarrsqrtx=(6+x)/5

Square both sides to remove the radical sign:

rarr(sqrtx)^2=((6+x)/5)^2

rarrx=((6+x)/5)((6+x)/5)

rarrx=(36+6x+6x+x^2)/25

rarrx=(36+12x+x^2)/25

Cross multiply:

rarr25x=36+12x+x^2

Subtract 12x both sides:

rarr13x=36+x^2

Subtract 13x both sides:

rarr0=36+x^2-13x

Write the equation in Standard form:

rarrx^2-13x+36=0

Luckily it Factors to:

rarr(x-9)(x-4)=0

So,x=9,4