How do you solve (4x+5)^2=35x+29 using the quadratic formula?

1 Answer
Aug 24, 2016

The Solns. are x_1~=0.55425, x_2~=-1.80425.

Explanation:

Formula to find the roots alpha, and beta of the quadr. eqn.

ax^2+bx+c+0 is, alpha, beta = (-b+-sqrt(b^2-4ac))/(2a).

Before proceed to solve the given eqn., let us first simplify it :

(4x+5)^2=35x+29.

rArr 16x^2+40x+25-35x-29=0, i.e., 4x^2+5x-4=0.

So, we have, a=4, b=5, c=-4

:. alpha, beta =(-5+-sqrt(25+64))/8=(-5+-sqrt89)/8

Taking, #sqrt89~=9.434, we have, the roots

alpha~=0.55425, beta~=-1.80425.

Enjoy Maths.!