Lets simplify this equation first by distributing the #-4# to #(x-8)#
#-4(x-8)->-4x+32#
Now lets combine like terms:
#color(blue)(-4x)+color(red)32color(blue)(-x)color(red)(-3)=color(red)4 ->color(blue)(-5x)+color(red)29=color(red)4#
Now we'll isolate the #x# by first subtracting 29 from both sides:
#color(blue)(-5x)+color(red)cancel(29-29)=color(red)(4-29)#
#color(blue)(-5x)=color(red)(-25)#
Then divide #5# on both sides:
#color(blue)cancel(-5/5x)=color(red)(-25/5)#
#color(blue)x=color(red)5#
We can verify the solution but substituting #5# for #x# in the original equation.
#-4((color(red)5)-8)-(color(red)5)-3=4#
#-4(-3)-(color(red)5)-3=4#
#12-(color(red)5)-3=4#
#7-3=4#
#4=4#