How do you solve 4=x+2sqrt(x-7)4=x+2x7 and identify any restrictions?

1 Answer
Mar 24, 2017

x = 6 +2i sqrt2, 6 -2i sqrt2x=6+2i2,62i2
There is no real root

Explanation:

4 = x + 2 sqrt(x-7)4=x+2x7
4 -x = 2 sqrt(x-7)4x=2x7

square both sides
(4 -x)^2 = (2 sqrt(x-7))^2(4x)2=(2x7)2

16 - 8 x +x^2 = 4(x-7)168x+x2=4(x7)
16 - 8 x +x^2 = 4x- 28168x+x2=4x28

rearrange the equation,
x^2 - 8x - 4x + 16 + 28 = 0x28x4x+16+28=0
x^2 - 12x + 44 = 0x212x+44=0

a = 1, b = -12, c =44a=1,b=12,c=44
since b^2 - 4ac < 0b24ac<0, so there is no real root for this equation.

We use completing a square to solve it.
x^2 - 12x + 44 = 0x212x+44=0
(x -6)^2 - (-6)^2 + 44 = 0(x6)2(6)2+44=0
(x -6)^2 - 36 + 44 = 0(x6)236+44=0
(x -6)^2 + 8 = 0(x6)2+8=0
(x -6)^2 = -8(x6)2=8
(x -6) = +-sqrt (-8) = +-sqrt (-1 * 8) = +- i sqrt 8 = +-2i sqrt2(x6)=±8=±18=±i8=±2i2
x = 6 +-2i sqrt2x=6±2i2