How do you solve 4+4x=2x^2 using the quadratic formula?

1 Answer
May 18, 2017

x=1+-sqrt(3)" "Exact value

x~~-0.732050....-> -0.73 to 2 decimal places

x~~color(white)(-)2.732050...... ->+2.73 to 2 decimal places

Explanation:

Subtract 4 and 4x from both sides giving:

y=0=2x^2-4x-4

Consider the standard form of y=ax^2+bx+c

That at y=0 we have x=(-b+-sqrt(b^2-4ac))/(2a)

In this case: a=2"; "b=-4"; "c=-4

so by substitution we have:

x=(+4+-sqrt((-4)^2-4(2)(-4)))/(2(2))

x=1+-sqrt(48)/4

...............................................................
Note that sqrt(48)/4 is the same as sqrt(48/4^2)=sqrt(3)

.....................................................................

x=1+-sqrt(3)" "Exact value

x~~-0.732050....-> -0.73 to 2 decimal places

x~~color(white)(-)2.732050...... ->+2.73 to 2 decimal places